A Java Implementation of Parameter-less Evolutionary Algorithms

نویسندگان

  • José C. Pereira
  • Fernando G. Lobo
چکیده

The Parameter-less Genetic Algorithm was first presented by Harik and Lobo in 1999 as an alternative to the usual trial-and-error method of finding, for each given problem, an acceptable set-up of the parameter values of the genetic algorithm. Since then, the same strategy has been successfully applied to create parameter-less versions of other population-based search algorithms such as the Extended Compact Genetic Algorithm and the Hierarchical Bayesian Optimization Algorithm. This report describes a Java implementation, Parameter-less Evolutionary Algorithm (P-EAJava), that integrates several parameter-less evolutionary algorithms into a single platform. Along with a brief description of P-EAJava, we also provide detailed instructions on how to use it, how to implement new problems, and how to generate new parameter-less versions of evolutionary algorithms. At present time, P-EAJava already includes parameter-less versions of the Simple Genetic Algorithm, the Extended Compact Genetic Algorithm, the Univariate Marginal Distribution Algorithm, and the Hierarchical Bayesian Optimization Algorithm. The source and binary files of the Java implementation of P-EAJava are available for free download at https://github.com/JoseCPereira/2015ParameterlessEvolutionaryAlgorithmsJava.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Java Implementation of a Parameter-less Evolutionary Portfolio

The Java implementation of a portfolio of parameter-less evolutionary algorithms is presented. The Parameter-less Evolutionary Portfolio implements a heuristic that performs adaptive selection of parameter-less evolutionary algorithms in accordance with performance criteria that are measured during running time. At present time, the portfolio includes three parameter-less evolutionary algorithm...

متن کامل

Deep Parameter Tuning of Concurrent Divide and Conquer Algorithms in Akka

Akka is a widely-used high-performance and distributed computing toolkit for fine-grained concurrency, written in Scala for the Java Virtual Machine. Although Akka elegantly simplifies the process of building complex parallel software, many crucial decisions that a↵ect system performance are deferred to the user. Employing the method of Deep Parameter Tuning to extract embedded ‘magic numbers’ ...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.08694  شماره 

صفحات  -

تاریخ انتشار 2015